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Polar Peroxidic Intermediates in Low Temperature 
Photooxygenation of yV-Methy !indoles1 

Sir-

The reaction of singlet oxygen with enamines is of special 
interest in view of wide-spread involvement of the enamine 
grouping in many heterocyclic compounds.2 Enamines are well 
known to react readily with singlet oxygen to form dioxetanes 
which can subsequently cleave to carbonyl and amide frag­
ments.3'4 The 1,2-cycloaddition of singlet oxygen with elec­
tron-rich olefins like enol ethers or enamines had been assumed 
to be a concerted („.2S -I- W2S) or („2$ + T2a) process.5 However, 
recent theoretical calculations6 have predicted that the ena-
mine-singlet oxygen reaction is a nonconcerted process in­
volving a zwitterion as an initial intermediate, whereas the 
experimental evidence for the intermediacy of such dipolar 
peroxides is lacking.7 We now wish to report that low tem­
perature photooxygenation of A'-methylindoles gives a polar 
peroxide which is efficiently intercepted inter- and intramo-
lecularly by alcohols and secondary amines, and that the 
trapping reactions show a remarkable temperature depen­
dency. 

We previously reported that dye-sensitized photooxygena­
tion of 3- or 2,3-substituted /V-methylindoles such as 1,3-
dimethylindole (1) at room temperature gives the normal 
C2-C3 ring cleavage products, 2, in nearly quantitative 
yield.70-8 However, rose bengal-sensitized photooxygenation9 

of 1 (5 mM) at —70 0 C in methanol led to a slower but clean 
formation of the unstable 3-hydfoperoxyindoline (3a) (97%) 
with a half-life of ca. 20 min at 30 0 C in CDCl3.10 The struc­
ture of 3 a " was assigned on the basis of spectral data12 and 
by converting it to benzoxazine 4 " 1 3 with methanol containing 
HCl.8a Similar photooxygenation of 1 in ethanol at - 7 0 0 C 
gave 3b 1 1 J 4 in quantitative yield. The overall reaction leading 
to 3 apparently consists of the addition of solvent alcohols to 
an initial intermediate, probably a polar peroxide. 

Similar types of intramolecular trapping reactions have been 
observed with N-methyltryptophol (5a) and /VVmethoxy-
carbonyl-yVVmethyltryptamine (5b). As we reported earlier, 
photooxygenation of 5a in methanol at - 7 0 0 C produces 6a 
(95%) and 7a (3%), whereas at room temperature 5a gives 7a 

Table I. Variation of the Product Distributions (6, 7) with 
Temperature and Solvents" 

Compound Solvent 

5a Methanol 
Methanol 
Methanol 
Acetonitrile 
Acetonitrile 
Acetone 
Acetone 
Methylene 

chloride' 
Methylene 

chloride'' 
5b Methanol 

Methanol 
Acetonitrile 
Acetonitrile 
Acetone 
Acetone 
Methylene 

chloride'' 
Methylene 

chloride'1 

Temp (0C) 

20 
-35 
-70 

20 
-30 

20 
-70 

20 

-70 

20 
-70 

20 
-30 

20 
-70 

20 

-70 

Products (%)* 

6 

C 

6a (78) 
6a (95) 

C 

6a (50) 
6c (18) 
6a (62) 
6c (37) 

6a (85) 

6d(28) 
6b (95) 
6d(36) 
6b (68) 
6d (51) 
6b(75)rf 

6d(32) 

6b (25)* 

7 

7a (95) 
7a (17) 
7a (3) 
7a(85)rf 

7a (35) 
7a(50)d 

7a (26) 
78(45)' 

C 

7b (60) 
C 

7b (55) 
7b (22) 
7b W 

C 

7b(35)d 

C 

" Initial concentration (2 mM). Unless otherwise stated, rose bengal 
was used as a sensitizer (CuC^-CaCh filter). * Determined by NMR 
analysis of the reaction mixture. Yields were based on reacted 5 . c 6 
could not be detected. d Appreciable amounts of polymeric materials 
were formed. ' Methylene blue (potassium chromate filter) was used 
as a sensitizer. 
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exclusively.8a We also observed that the product ratio (6/7) 
is highly sensitive to the reaction temperature (Table I). The 
hydroperoxides 6a and 6b were not converted to 7a and 7b, 
respectively, under the conditions.15 As shown in Table 1, the 
trapping reaction to yield 6 is taking place preferentially at low 
temperatures in any solvent listed in table I. A similar tem­
perature dependency has also been observed in the photooxy­
genation of 5b.16 

These results clearly indicate that the initial intermediate 
is a peroxide which is capable of undergoing an efficient ad­
dition reaction with alcohols or secondary amines even at low 
temperature. Since dioxetanes including enamine dioxetanes4 

are not known to react with nucleophiles such as alcohols or 
amines,18 it seems unlikely that the dioxetanes (8, 9) are the 
intermediates.19 The results may most reasonably be explained 
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in terms of a stepwise mechanism involving a zwitterion (10 
or 11), not by a concerted mechanism.20 Thus the zwitterions 
(10,11) are intercepted by the nucleophiles at low tempera­
tures to give the hydroperoxides (3, 6) or rearrange to the 
dioxetanes (8,9) at ordinary temperature.22 According to the 
MINDO/3 calculations, the zwitterion, an initial intermediate 
in enamine-singlet oxygen reaction, has been predicted to 
undergo rearrangement to a dioxetane with a relatively high 
activation energy compared to that for other processes such 
as rearrangement to a perepoxide.6a If so, it seems very likely 
that the lifetime of the zwitterions (10,11) will be longer at 
lower temperature, permitting the trapping reactions more 
efficiently. The product ratio (6/7) is also solvent dependent. 
Polar solvents appear to increase the ratio of the dioxetane 
mode products (7) to the trapping reaction at least at 20 0C 
(Table I), although the solvent effect is still obscure. It is known 
that polar solvents increase the ratio of dioxetane formation 
to ene reaction.21a'd'23 

In order to get the spectroscopic evidence for the initial in­
termediate, we carried out the photooxygenation of 5a at —70 
0C in an NMR cell. The NMR spectrum (-70 °C) of the re­
action mixture in CD3OD or CDCI3 had only the resonances 
of 6a. Neither zwitterion 11 nor dioxetane 9 could be detected 
at the temperature.24 The spectroscopic studies at —70 0C 
provided no direct evidence in support of the zwitterions; 
however, we believe that the results described here may rep­
resent chemical evidence for the intermediacy of the zwitter-
ionic peroxides. 
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Synthesis of Vane's Prostaglandin X, 6,9a-Oxido-
9a,15a-dihydroxyprosta-(Z)5,(E)13-dienoic Acid 

Sir: 

Vane and co-workers have recently obta ined evidence for 
the formation of a new and remarkab ly active pros taglandin , 
termed P G X , from the prostaglandin endoperoxides PGG2 or 
P G H 2 and microsomal fractions of cer ta in tissues, especially 
aor ta , a r te r ia l wall , and fundus of s tomach . 1 , 2 Vane ' s P G X 
inhibits platelet aggregat ion as do P G E i and PGD2, but is 
several t imes more potent ; it also causes relaxat ion of ar ter ia l 
smooth muscle. Al though no s t ructure was proposed for P G X , 
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